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Abstract: Both the pericentromere and the nucleolus have unique characteristics that distinguish
them amongst the rest of genome. Looping of pericentromeric DNA, due to structural maintenance
of chromosome (SMC) proteins condensin and cohesin, drives its ability to maintain tension during
metaphase. Similar loops are formed via condensin and cohesin in nucleolar ribosomal DNA (rDNA).
Condensin and cohesin are also concentrated in transfer RNA (tRNA) genes, genes which may be
located within the pericentromere as well as tethered to the nucleolus. Replication fork stalling,
as well as downstream consequences such as genomic recombination, are characteristic of both
the pericentromere and rDNA. Furthermore, emerging evidence suggests that the pericentromere
may function as a liquid–liquid phase separated domain, similar to the nucleolus. We therefore
propose that the pericentromere and nucleolus, in part due to their enrichment of SMC proteins and
others, contain similar domains that drive important cellular activities such as segregation, stability,
and repair.
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1. Introduction

During cell division, the centromere functions as an essential genetic locus for ensuring faithful
chromosome segregation. Microtubules connect to each centromere on sister chromatids via a
proteinaceous complex called the kinetochore. Eukaryotic centromeres range in complexity from simple
point centromeres in budding yeast to regional centromeres in fission yeast, plants, and mammals [1,2].
In budding yeast, the pericentromere is defined as the cohesin- and condensin-enriched region spanning
30–50 kb on either side of the conserved centromeric sequence [3–5]. However, in regional centromeres,
which are enriched in heterochromatic alpha satellite repeats, there are multiple sites of microtubule
attachment. Despite these differences, the interkinetochore distance is conserved among eukaryotes [6],
suggesting an important conservation of centromere mechanics.

The nucleolus, as the site of ribosome biogenesis, arises from the compartmentalization of
ribosomal DNA (rDNA). In budding yeast, rDNA is localized to chromosome XII, consisting of
150 tandem repeats of ~ 9 kb each. rDNA repeats in higher eukaryotes such as human are more
dispersed, with repeats on five different chromosomes, but nonetheless they have similar properties
regarding rDNA structure [7].

The pericentromere and nucleolus have a number of similarities between their domains.
These include condensin/cohesin localization and proteins that regulate the formation of DNA
loops. Transfer RNA (tRNA) genes, enriched in condensin and cohesin, are also located within the
pericentromere region and tethered to the nucleolus. Replication fork stalling occurs across both
centromeres and rDNA repeats, along with a propensity for control of genomic recombination. Lastly,
while the nucleolus is a well-identified liquid phase separated region, emerging evidence suggests
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that the pericentromere may have similar properties. Here, we discuss in detail these commonalities
between the pericentromere and the nucleolus.

2. Common Features in Both the Pericentromere and the Nucleolus

2.1. DNA Loops Are Enriched in the Pericentromere and Nucleolus

While DNA looping was first observed in 1906 in salamander eggs [8], DNA loops have since
been thoroughly documented in a number of different species [9]. These loops can potentially regulate
many functions within the cell, including transcription, recombination, and replication [6,10]. Though
DNA loops are present in various locations throughout the genome, both the pericentromere and the
nucleolus are regions of high loop density that are controlled by unique protein interactors.

In the pericentromere, highly looped DNA has been found in budding yeast (Saccharomyces
cerevisiae) [11,12] as well as in multicellular organisms such as Xenopus laevis [13] and chicken cells [14].
In budding yeast, centromeres from the 16 chromosomes cluster together into a disc approximately 50 nm
by 250 nm, which connects to the microtubule plus-ends (for review, see [6]). From here, the pericentric
region consists of protruding intramolecular centromere loops, or C-loops, that are formed by loss of
sister chromatid cohesion, with radial sub-loops forming off of each C-loop [11,12,15,16] (Figure 1A).
The structural maintenance of chromosome (SMC) proteins condensin and cohesin have both been
implicated in forming and maintaining these pericentromeric loops in budding yeast [11,12,17,18].
It has been proposed that these loops play an important role in maintaining the mechanics of the
pericentromere [15,16], and may provide a mechanism for chromatin condensation [19,20]. Furthermore,
the loops generated between the repeat sequences found in higher eukaryotic centromeres may also
facilitate recombination [21].

The rDNA present within the nucleolus also features characteristic looping behavior (Figure 1B).
In budding yeast, fluorescence in situ hybridization (FISH) staining of the entire rDNA indicates a
loop-like structure in nucleoli [22]. Similar to the pericentromere, SMC proteins cohesin and condensin
have both been implicated in rDNA loop formation. Cohesin mutations result in reduced looping
of the rDNA genes for 35S and 5S in budding yeast [23], which may affect their transcription [24].
Live cell imaging of rDNA in condensin mutants further implicates condensin in the dynamics of
loop formation, with time-lapsed imaged mutants displaying a delay compared to wild-type in loop
formation [25]. Condensin-mediated loop extrusion of rDNA is further supported by globally generated
Hi-C contact maps [26]. Both nucleolar transcription factor 1 (UBF), a mammalian protein containing
high mobility group (HMG) dox domains, and its yeast homolog, high mobility protein 1 (Hmo1),
bind preferentially to actively transcribed rDNA genes [27,28] and are enriched in the nucleolus [29].
Electron spectroscopic imaging in Xenopus suggests that UBF dimers bend approximately 150 bp rDNA
into a loop formation [30,31]. While Hmo1 has yet to specifically be identified in the looping feature of
rDNA, the reliance on the HMG box for the looping activity of UBF suggests that Hmo1 may have a
similar role [32]. Also in Xenopus, immunostaining indicates that Pol III sites (which bind to nucleolar
tRNA genes) are localized to DNA loops [33], suggesting an additional nucleolar DNA looping site.
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Figure 1. DNA loops in the pericentromere and nucleolus. (a) Pericentromere loop schematic. 
Condensin extrudes DNA in the pericentromere [12,17,18,34] while cohesin radially links nearby 
loops [11,12]. Pericentric condensin enrichment is controlled by both Cbf5, a small nucleolar 
ribonucleoprotein, [35] and the histone deacetylase Sir2 [17]. DNA helicase Rrm3 regulates replication 
fork stalling at the pericentromere [36], and DNA ligase 4 (Dnl4) regulates segregation with a potential 
role in pericentric fork stalling as well [37,38]. tRNA genes are located in the pericentromere [39–41], 
and are associated with both condensin and cohesin [5,41,42]. (b) Nucleolus loop schematic. 
Condensin [43–46] and cohesin [23] both regulate loop formation in rDNA. DNA replication fork 
blocking protein (Fob1) regulates enrichment of condensin in rDNA [47], whereas Sir2 regulates 
cohesin rDNA localization [48]. Dnl4 [37] and Rrm3 [36] both control fork stalling at rDNA repeats. 
tRNA genes are tethered to the nucleolus in a Cbf5-dependent manner [49]. 

2.2. SMC Proteins in the Pericentromere and Nucleolus Display Common DNA Regulatory Roles 

Structural maintenance of chromosome (SMC) protein complexes, such as condensin and 
cohesin, are essential to regulation of chromosome function and structure. Condensin and cohesin 
are enriched both in the pericentromere [3,42,50,51] and in the nucleolus [52,53] in a variety of 
different organisms, suggesting an important conservation of function. These proteins play an 
important role in cohesion between sister chromatids, chromosome segregation, DNA replication, 
DNA damage repair, and DNA loop formation. In eukaryotes, SMC proteins form heterodimers, 
creating a V-shaped molecule with a variable conformation [54]. While there are two different 
identified condensin complexes (condensin I and II), only condensin I has been found in fungi such 
as budding and fission yeast [20]. 

The SMC heterodimer in condensin I/II consists of Smc2/Smc4. Non-SMC subunits in condensin 
I includes chromosome associated protein H (CAP-H; a member of the kleisin protein family), and 
HEAT repeat (which consists of Huntingtin elongation factor 3 [EF3], protein phosphatase 2A [PP2A], 
and the yeast kinase, target of rapamycin 1 [TOR1])-containing chromosome associated protein D2 
(CAP-D2) and chromosome associated protein G (CAP-G), whereas condensin II contains CAP-H2, 
CAP-D3, and CAP-G2 [20]. As an SMC protein complex, condensin has a number of different roles 
in regard to DNA regulation. As its name suggest, condensin is essential for chromosome 
condensation, or heterochromatin formation [52,55]. More recently, studies have found that 
condensin is involved in extruding pericentric DNA loops [12,17,18] as well as cross-linking DNA in 
trans [56]. Live imaging of yeast condensin along double-tethered λ -DNA also showed that 
condensin mediates loop extrusion [34]. The localization of condensin is further regulated by proteins 
such as the histone deacetylase Sir2. Sir2 contributes to the axial position of condensin in the 
pericentromere, in which condensin is located proximal to the yeast mitotic spindle. In yeast lacking 

Figure 1. DNA loops in the pericentromere and nucleolus. (a) Pericentromere loop schematic.
Condensin extrudes DNA in the pericentromere [12,17,18,34] while cohesin radially links nearby
loops [11,12]. Pericentric condensin enrichment is controlled by both Cbf5, a small nucleolar
ribonucleoprotein, [35] and the histone deacetylase Sir2 [17]. DNA helicase Rrm3 regulates replication
fork stalling at the pericentromere [36], and DNA ligase 4 (Dnl4) regulates segregation with a potential
role in pericentric fork stalling as well [37,38]. tRNA genes are located in the pericentromere [39–41],
and are associated with both condensin and cohesin [5,41,42]. (b) Nucleolus loop schematic.
Condensin [43–46] and cohesin [23] both regulate loop formation in rDNA. DNA replication fork
blocking protein (Fob1) regulates enrichment of condensin in rDNA [47], whereas Sir2 regulates cohesin
rDNA localization [48]. Dnl4 [37] and Rrm3 [36] both control fork stalling at rDNA repeats. tRNA genes
are tethered to the nucleolus in a Cbf5-dependent manner [49].

2.2. SMC Proteins in the Pericentromere and Nucleolus Display Common DNA Regulatory Roles

Structural maintenance of chromosome (SMC) protein complexes, such as condensin and cohesin,
are essential to regulation of chromosome function and structure. Condensin and cohesin are enriched
both in the pericentromere [3,42,50,51] and in the nucleolus [52,53] in a variety of different organisms,
suggesting an important conservation of function. These proteins play an important role in cohesion
between sister chromatids, chromosome segregation, DNA replication, DNA damage repair, and DNA
loop formation. In eukaryotes, SMC proteins form heterodimers, creating a V-shaped molecule with a
variable conformation [54]. While there are two different identified condensin complexes (condensin I
and II), only condensin I has been found in fungi such as budding and fission yeast [20].

The SMC heterodimer in condensin I/II consists of Smc2/Smc4. Non-SMC subunits in condensin I
includes chromosome associated protein H (CAP-H; a member of the kleisin protein family), and HEAT
repeat (which consists of Huntingtin elongation factor 3 [EF3], protein phosphatase 2A [PP2A], and the
yeast kinase, target of rapamycin 1 [TOR1])-containing chromosome associated protein D2 (CAP-D2)
and chromosome associated protein G (CAP-G), whereas condensin II contains CAP-H2, CAP-D3,
and CAP-G2 [20]. As an SMC protein complex, condensin has a number of different roles in regard
to DNA regulation. As its name suggest, condensin is essential for chromosome condensation,
or heterochromatin formation [52,55]. More recently, studies have found that condensin is involved in
extruding pericentric DNA loops [12,17,18] as well as cross-linking DNA in trans [56]. Live imaging of
yeast condensin along double-tethered λ -DNA also showed that condensin mediates loop extrusion [34].
The localization of condensin is further regulated by proteins such as the histone deacetylase Sir2. Sir2
contributes to the axial position of condensin in the pericentromere, in which condensin is located
proximal to the yeast mitotic spindle. In yeast lacking Sir2, condensin becomes more radially displaced,
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distal to the spindle and perpendicular to the spindle axis, and can appear as a bilobed distribution
similar to pericentric cohesin [17]. Condensin also has a role in positive supercoiling of DNA in both
Xenopus [57] and budding yeast [58], which may promote proper segregation as positively supercoiled
DNA is more resistant to pulling forces [6,59]. Meanwhile, in rDNA, FISH studies in budding yeast
indicate that condensin is necessary for rDNA looping [43–46]. DNA replication fork blocking protein
Fob1, a known rDNA binding protein, is responsible for loading condensin onto rDNA repeats in
yeast [47].

Cohesin contains a Smc1/Smc3 heterodimer, as well as two other subunits: Scc1 (also referred to
as Mcd1 or Rad21) and Scc3 (also known as SA) [54]. Cohesin can form a ring-like molecule [60,61]
among many other possible configurations [62–64]. While first identified for its prominent role in
sister chromatid cohesion [65], the exact mechanism of the cohesion ability of cohesin remains debated.
Possible models include the ring model, in which a single cohesin molecule embraces both sister
chromatids, the handcuff model, in which two cohesin rings on either sister chromatid bind together,
and the bracelet model, in which a cohesin oligomer wraps around the sister chromatids [66]. Chromatin
immunoprecipitation (ChIP) assays on yeast strains with mutated alleles of cohesin subunit Mcd1 also
revealed that cohesin preferentially binds the pericentromere versus the chromosome arms [67]. In vivo
studies using yeast indicate that during metaphase, cohesin is radially displaced from the pericentric
DNA [11,12], which is dependent on its ability to passively diffuse along the chromosome [18],
and suggests that it plays a role in linking the C-loops generated by condensin. However, other studies
suggest a cohesin-mediated loop extrusion model, particularly during interphase [62,68]. In mammalian
cells, ChIP-seq in combination with Hi-C indicates that cohesin is localized to topological associated
domains (TADs), an indicator of loop formations [69], and further studies suggest cohesin may directly
regulate these loops [70–73]. Outside of the pericentromere, cohesin is recruited to both tRNA genes
and rDNA sites in a Sir2-dependent mechanism [48,74]. Cohesin is further involved in the cohesion
of rDNA sister chromatids in budding yeast [65,75], and controls mitotic rDNA organization [76].
Mutations of cohesin are associated with both disorganization of the nucleolus and reduced looping of
rDNA [23], concurrent with less rRNA production and subsequent protein translation [77], suggesting
a particular role for cohesin at this locus.

Condensin and cohesin feature small ubiquitin-like modifier (SUMO) sites, or sumoylation
sites [78], a reversible modification which affects their distribution in both the pericentromere and at
rDNA sites. Deletion of Ulp2 (also referred to as Smt4), an isopeptidase that removes SUMO from
proteins, causes a decrease in pericentric condensin clustering [79], as well as a decrease in condensin
localization to rDNA sites [80] in budding yeast. This result is consistent with decrease in tension at
the pericentromere [79] and lack of sister chromatid cohesion [81], suggesting a role for sumoylation in
these activities of pericentric condensin.

DNA topoisomerase II (Top2) has distinct interactions with condensin and cohesin in both the
pericentromere and rDNA in a variety of eukaryotic species [82–84]. In the pericentromere, Top2 has an
essential role in regulating mitotic chromosome structure and tension [81,85]. Depletion of condensin
in Drosophila disrupts Top2 centromeric localization [86], suggesting that condensin plays a role in
regulating Top2 localization. A similar dependence for condensin-mediated Top2 is observed at
the rDNA locus in budding yeast, with both reduced binding of Top2 in the absence of condensin
as well as a lack of restoration of segregation defects with Top2 overexpression in the condensin
mutants [83]. Sumoylation sites are present in Top2 [81], potentially influencing its activity. Deletion
of either Top2 or isopeptidase Ulp2/Smt4 in budding yeast causes a decrease in compaction at the
pericentromere during metaphase [79] as well as increased pericentromere stretching [85]. These data
suggest that Top2 activity, coordinated by sumoylation, regulates pericentromere dynamics. In yeast
lacking cohesin, in which biorientation of sister kinetochores is lost during mitosis, depletion of Top2
actually restores biorientation, indicating that linkage between sister chromatids is a balance between
cohesion and catenation [87]. Similar findings have also been observed in DT40 chicken cells [88].
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A combination of ChIP-seq and Hi-C analysis indicates that human Top2 associates with cohesin
subunits and rDNA-binding proteins [84], confirming a potential role of Top2 at these locations.

In mammalian cells, a zinc finger protein called CCCTC-binding factor (CTCF) is involved in
forming chromatin loops [89,90] and associates with cohesin [91,92]. CTCF can function as an insulator,
preventing interaction between active and inactive chromatin and blocking enhancer activity [93].
While CTCF has not been identified in lower eukaryotic species such as Saccharomyces cerevisiae,
Schizosaccharomyces pombe, and Caenorhabditis elegans [94], transformation studies suggest that CTCF
has a similar insulating function in yeast [95]. Furthermore, members of the Ctf19/COMA complex,
which regulates pericentromeric cohesin enrichment [51,96,97], play a vital role pericentromere loop
formation [98], perhaps similar to mechanism by which CTCF mediates cohesin at the base of loops [99].
This suggests that the Ctf19/COMA complex could function as the yeast equivalent of CTCF. ChIP-seq
analysis also indicates that CTCF associates with Pol III sites (tRNA genes) [100], which as discussed
below, are tethered to the nucleolus and localized in the pericentromere. CTCF further regulates rDNA
in human cells [101,102], and localizes to the nucleolus in mammalian cells and Drosophila [103,104].
Knockdown of condensin increases CTCF binding to rDNA, suggesting a role for condensin in
negatively regulating CTCF [105]. These data therefore suggest a common role for CTCF, possibly via
association with SMC proteins, in regulating both pericentric and nucleolar DNA.

2.3. tRNA Genes Are Localized to Both the Pericentromere and the Nucleolus

Transfer ribonucleic acid (tRNA) genes, also referred to as tDNA, are short sequences located
throughout the genome and are bound by transcription factor RNA polymerase III (Pol III) [106].
These genes, of which there are 274 in yeast and approximately 450 in humans, are dispersed throughout
the genome. However, nucleotide sequencing in fission yeast has shown that some tRNA genes are
localized in the pericentromere in fission yeast [107], and FISH studies have identified pericentric
tRNA genes in both fission and budding yeast [39–41]. Tfc1, a subunit of the Pol III transcription factor
complex, was also found to be localized in the pericentric region in budding yeast [35]. Some tRNA
genes are also located in the periphery of the nucleolus in fission and budding yeast [40,41,108],
and early processing of tRNAs has previously been found to occur in the nucleolus in yeast [109].
It has further been shown that the tethering of tRNA genes to the nucleolus is influenced by proximity
to centromeres, with closer proximity of Pol III-transcribed genes to centromeres associated with less
nucleoli association [110]. This suggests an additional level of regulation of tRNA gene localization
that is influenced by Rabl configuration-like organization, consistent with chromosome arms extending
away from centromeres towards the nucleolus [111,112].

tRNA genes are sites of enriched cohesin [42] and condensin [5,41]. Interestingly, condensin
mutations result in loss of nucleolar clustering of tRNA genes, suggesting that condensin plays
a role in tRNA localization [41]. Deletion of tRNA genes on chromosome III in budding yeast
disrupts not only condensin localization to tDNA sites, but also affects centromere–centromere
interaction [112], suggesting effects of tRNA genes on chromosome structure. Cohesin regulates tRNA
activity, with mutations that cause human cohesinopathies resulting in defects in tRNA gene-mediated
silencing when expressed in budding yeast [113]. The histone deacetylase Sir2, which as previously
mentioned affects axial condensin localization at the pericentromere [17], is similarly responsible for
enrichment of condensin and cohesin at tRNA sites [74].

Cbf5, a small nucleolar ribonucleoprotein, further regulates tRNA distribution. Mutations in
Cbf5 disrupts both the nucleolar localization of pre-tRNAs as well as alleviating tRNA gene-mediated
silencing [49]. Cbf5 also regulates pericentric condensin; in budding yeast, Cbf5 mutants have decreased
condensin enrichment at the pericentromere [35], suggesting that condensin regulation may underlie
the effects of Cbf5 on nucleolar tRNA localization.

Certain DNA elements called chromatin barriers or insulators, which are present in multiple
eukaryotic species, play a role in structurally defining functionally distinct chromatin regions [114].
In particular, tRNA genes have been shown to separate heterochromeric DNA from unsilenced
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regions. In fission yeast, a centromeric tRNA gene was found to play a role in defining centromeric
heterochromatin and normal meiotic segregation [115], and is dependent on Pol III activity [116].
In human cells, tRNA genes have a similar function, with multimerized tDNAs increasing enhancer
blocking [117]. Similarly, tRNA-mediated gene silencing is dependent on its nucleolar localization in
budding yeast [40]. In addition, tRNA genes represent sites of replication fork pausing in budding and
fission yeast, possibly due to their high rates of transcription [118,119]. Furthermore, in both specific
tRNA genes and centromeres, there is a dependency on replisome progression complex member Tof1,
but not Mrc1, for replication fork pausing [120]. The function of tRNA as a chromatin barrier in
multiple eukaryotic species suggests a distinct conservation of this mechanism.

2.4. Replication Fork Stalling in Pericentromere and rDNA

Both centromeres and rDNA repeats in the nucleolus are characterized by blockades that
disrupt fork progression. While highly repetitive DNA sequences are thought to promote replication
fork pausing [121–123], even the ~125 bp non-repetitive point centromeres in yeast feature fork
stalling [120,124]. A complex of S-phase checkpoint proteins (Tof1, Mrc1, Csm3) that are responsible
for slowing DNA synthesis in the presence of DNA damage localize specifically to replication forks in
budding yeast [125]. Tof1 in particular is required for fork pausing at yeast centromeres [120]. Deletion
of Csm3, which interacts directly with Tof1 [126], is important for establishment of fork pausing [127].
DNA helicase Rrm3 promotes replication fork progression at multiple genomic sites, including tRNA
genes, rDNA, and centromeres [36,128]. Csm3 may facilitate this fork pausing by blocking Rrm3
helicase-induced progression through replication forks [129], suggesting a common mechanism of
stalled forks in both the nucleolus and the pericentromere.

Chl4, Iml3, and Mcm21, proteins that are members of the Ctf19 complex in yeast (analogous to
the constitutive centromere associated network, or CCAN, in mammals), are involved in kinetochore
assembly at the centromere [130]. Interestingly, Chl4, Iml3, and Mcm21 are all required for pericentric
cohesin enrichment [96,97]. Loss of either Iml3 or Chl4 causes a decrease of pericentric cohesin, which
is counteracted by slowing replication with hydroxyurea treatment [96]. The cohesin-loading function
of these proteins could therefore be instrumental to ensuring that pericentric cohesin is in place prior to
the replication fork, ensuring proper cohesion of the resulting sister chromatids. A yeast model using a
conditional dicentric strain, which allows the study of de novo kinetochore assembly, demonstrated
that Chl4/Iml3/Mcm21 mutants all suppress dicentric breakage [131]. The lack of breakage that is
normally induced in a dicentric strain is consistent with a lack of de novo kinetochore assembly in these
mutants. Furthermore, de novo kinetochore assembly in Chl4/Iml3 mutants is rescued by pausing
replication using hydroxyurea [98]. By slowing the replication process, this may allow additional time
for these mutants to resume proper kinetochore assembly.

At the rDNA locus, stalling at replication forks has been well-established in both yeast and
mammals [132]. In a single 9 kb rDNA repeat in budding yeast, the 35S gene is transcribed by Pol
I, followed by the 5S gene that is transcribed by Pol III in the opposing direction. A replication
fork barrier (RFB) is located at the 3’ end of the 35S gene, allowing replication to occur through
35S but blocking replication in the opposing direction [133]. At the human rDNA locus, however,
the replication fork barrier functions in a uniquely bi-directional manner, blocking replication from
occurring in both directions at this junction [134]. In yeast, a protein called Fob1 is required for RFB
activity at the rDNA locus [135,136]. Fob1 co-localizes with rDNA-binding protein Hmo1 [29] and
also condensin [47], proteins that as discussed previously may be involved in DNA looping. Similarly,
atomic force microscopy imaging indicates that the RFB sequence may actually wrap around Fob1 in a
nucleosome-like fashion [136].

Top2, which as previously mentioned associates with SMC proteins, plays an important role
regarding replication termination both in the pericentromere as well as in rDNA repeats. Termination
regions (TERs) are located at the point of two converging replication forks, contain fork pausing
elements [137], and are crucial for terminating replication [138]. In budding yeast, TERs are particularly
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concentrated near centromeres, and mutation of Top2 causes double-stranded breaks and recombination
at these sites [138]. Top2 mutants result in repair checkpoint activation that is counteracted by a
Top2-Fob1 double mutant, implying that Top2 mediates proper replication termination in rDNA as
well [139].

DNA ligase 4 (Dnl4), a protein involved in non-homologous end-joining DNA repair [140],
may play a role at the replication fork barrier in rDNA sites. Dnl4 interacts with replication
fork-associated Sgs1 to prevent fork breakage-mediated events in rDNA [37]. While deletions
of Dnl4 in budding yeast may influence segregation events at the pericentromere [38], it remains
unclear if Dnl4 may have a similar role specifically in pericentric fork pausing.

2.5. Recombination Control in the Pericentromere and rDNA

The similarities between the pericentric region and nucleolar rDNA suggests that these two
regions may also have similar features in regard to control of recombination and resulting genomic
instability. Highly repetitive regions of the genome, such as those in regional centromeres of mammals
and rDNA in eukaryotes, are susceptible to mitotic recombination. While recombination during meiosis
tends be greatly repressed near the centromere in a variety of species [141], in mitosis, recombination
occurs at budding yeast pericentromeres in the form of gene conversion [142], though this may
occur at reduced levels closer to the centromere [143]. In mammals, however, which feature regional
centromeres with high numbers of repeat sequences, mitotic recombination is a common occurrence.
Using chromosome-oriented FISH to specifically target centromere repeats in mouse cells, it has
been shown that there are extremely high mitotic recombination events at centromeres compared
to the rest of the genome [144]. As mentioned previously, it has also been proposed that the highly
repetitive sequences found in higher eukaryotes promotes recombination, which further drives the
loop formation that is necessary for proper centromere function [21].

Replication fork stalling further facilitates recombination events [145]. Double-stranded breaks
sometimes occur as a result of stalled replication forks [146,147], which are commonly repaired by either
homologous recombination in yeast, or non-homologous end-joining in mammals. The rDNA-binding
protein Fob1, which is essential for RFB formation, is particularly important for facilitating these
recombination events [148,149]. As demonstrated in mutant yeast strains with lower copy numbers of
rDNA, this activity of Fob1 is also dependent on the rate of transcription, with higher transcription
correlating to more recombination even in Fob1 mutants [150]. Recombination hot-spot (HOT1), a DNA
element that increases levels of inter- and intrachromosomal homologous recombination between
repeats [151], is highly prevalent surrounding rDNA repeats. Analysis of HOT1 mutants indicated
that only the set containing mutated Fob1 had defects in homologous recombination, suggesting that
Fob1 is an important mediator at these locations [135]. Kobayashi et al. further demonstrated that
Fob1 mediates the expansion/contraction of rDNA repeats [149]. Whether fork stalling might influence
recombination at the pericentric region, however, has yet to be determined.

Sir2, which as previously mentioned affects localization of condensin/cohesin at the pericentromere
and rDNA sites, appears to negatively influence recombination in rDNA repeats. Sir2 mutants have a
reliance on recombination genes (Rad50 and Rad52) that are dispensable in wild-type strains [152],
suggesting a unique recombination pathway controlled by Sir2. Deletion of Sir2 also increases the
number of rDNA repeats, and decreases rDNA-associated cohesin [48], suggesting that Sir2 may
mediate or regulate levels of recombination by enhancing sister chromatid cohesion. Interestingly,
in the pericentromere of fission yeast, cohesin prevents double-stranded breaks and the resulting
recombination events from occurring during meiosis [153]. These data suggest a potential role for Sir2
and cohesin in controlling recombination events in both the pericentromere and rDNA.

Top2, as a mediator of replication fork progression and sister chromatid decatenation, may regulate
recombination events at the pericentromere and at rDNA sites. Top2 mutants have enhanced
recombination events at TERs, regions that are concentrated near centromeres [138], and enhanced
recombination is observed at rDNA sites in Top2 mutants [154], suggesting that Top2 may suppress
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recombination at these regions. Conversely, the association between Top2 and cohesin/CTCF [84]
at potential loop anchor points may actually promote rearrangement events. In mammalian cells,
double-stranded breaks induced by the anti-cancer drug etoposide corresponds with sites occupied by
CTCF and Top2 [155,156]. Meanwhile, double-stranded breaks are decreased in Top2 mutants [155].
These data suggest that Top2 may have unique effects on genomic stability, particularly through its
interactions with proteins such as cohesin.

2.6. Phase Separation in the Nucleolus and Pericentromere

Phase separation as a mechanism for defining discrete departments within the cell has been a
rapidly growing field within cell biology. The nucleolus, which consists of liquid–liquid separated
phases, also known as biomolecular condensates [157], has been the target of many such studies.
Liquid–liquid phase separation (LLPS) has been identified in the nucleolus of Xenopus [158,159] as well
as C. elegans [160]. Photobleaching experiments in budding yeast further suggest an organized network
of the nucleolus, with distinct segregation of nucleolar proteins following mitosis [161]. Membraneless
organelles of not only the nucleolus but also those such as stress granules and nuclear speckles are
characterized by RNA-protein interactions [162], suggesting that these interactions may promote phase
separation. Supporting this notion, mutation of the RNA recognition motif of nucleolar protein NPM1
prevents the formation of liquid-like droplets [159,163]. LLPS is thought to be crucial in defining the
organization of nucleoli [159], facilitating the role of nucleolar sub compartmentalization in RNA
processing and ribosome biogenesis [164]. In human cell lines, the liquid-like state of the nucleolus is
further involved in quality control of misfolded proteins [165].

In addition to LLPS, polymer–polymer phase separation (PPPS) may also play a role in
compartmentalizing not only the nucleolus but also in defining chromosome territories. Polymer
models suggest that entropic forces generated by chromatin polymers constrain chromosome
territories [166–169]. Furthermore, computational modeling of nucleolar structure suggests nucleolar
phase separation may be driven by polymer crowding, even without assuming the presence DNA
binding factors [170]. Bead-spring models of chromatin dynamics further suggest that nucleolar PPPS
is formed by chromosomal cross-linking and DNA loop formation [171]. In addition, this notion that
DNA loops drive PPPS in the nucleolus suggests that a similar mechanism may regulate PPPS at the
pericentromere, which as previously discussed is characterized by the formation of DNA loops.

While the pericentromere is less well-studied compared to the nucleolus in regard to potential
LLPS properties, there is emerging evidence that supports such phase separation. The chromosomal
passenger complex (CPC), which includes the kinase Aurora B as well as other subunits such as
INCENP and borealin, regulates tension between sister kinetochores, ensuring proper segregation of
sister chromatids [130,172]. In vitro experiments indicate that the non-kinase subunits of the CPC form
liquid-like droplets at physiological centromere concentrations, and experiments using HeLa cells
further suggest that phase separation induced by CPC component borealin mediates its location to the
inner centromere [173]. The authors found that alpha satellite RNA was associated with the liquid-like
droplets, suggesting a potential role of CEN RNA in formation of this liquid–liquid phase, similar to
nucleolar RNA/protein interactions facilitating LLPS [162]. Interestingly, Aurora B mediates pericentric
enrichment of condensin in HeLa cells [174], suggesting a potential interplay for other pericentric
proteins in mediating phase separation. Furthermore, interphasic centromeres can localize to the
nucleolus in both Drosophila and human cells [175–177]. In human cells, the CPC component INCENP
associates with centromeric alpha satellite RNA, targeting the interphasic nucleolar localization of
centromeres [178]. Whether this activity may be linked to a potential role of CPC components in
liquid–liquid phase separation has yet to be determined, however.

Repetitive heterochromatin, such as the alpha satellite repeats present in regional centromeres,
has been shown to promote liquid–liquid phase separation. In particular, heterochromatin protein 1α
(HP1α), a protein localized to heterochromatin in mitotic centromeres in higher eukaryotes [179], is
responsible for liquid-like droplet formation in Drosophila and mammalian cells [180,181]. While HP1
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has not been identified in budding yeast, the histone deacetylase Sir2 may have a similar role in
regulating heterochromatin [182]. It has further been suggested that phase separation of these repetitive
DNA sequences may drive chromatin organization and folding [183], suggesting a potential mechanism
at centromeres and in the nucleolus.

3. Conclusions

As two seemingly discrete regions, the pericentromere and nucleolus have a number of
commonalities in regard to their features and regulatory mechanisms. The similar chromatin structure
of both the pericentromere and rDNA, regulated in part by SMC proteins, may impart similar
features such as fork pausing, tRNA tethering, regulation of genomic instability, and phase separation.
Mechanisms underlying such activities in one region may therefore be used to guide studies of similar
activities in the other region.
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