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The rise of machine learning and deep learning technologies have allowed researchers
to automate image classification. We describe a method that incorporates automated
image classification and principal component analysis to evaluate computational
models of biological structures. We use a computational model of the kinetochore to
demonstrate our artificial-intelligence (AI)-assisted modeling method. The kinetochore
is a large protein complex that connects chromosomes to the mitotic spindle to
facilitate proper cell division. The kinetochore can be divided into two regions: the
inner kinetochore, including proteins that interact with DNA; and the outer kinetochore,
comprised of microtubule-binding proteins. These two kinetochore regions have been
shown to have different distributions during metaphase in live budding yeast and
therefore act as a test case for our forward modeling technique. We find that a simple
convolutional neural net (CNN) can correctly classify fluorescent images of inner and
outer kinetochore proteins and show a CNN trained on simulated, fluorescent images
can detect difference in experimental images. A polymer model of the ribosomal DNA
locus serves as a second test for the method. The nucleolus surrounds the ribosomal
DNA locus and appears amorphous in live-cell, fluorescent microscopy experiments in
budding yeast, making detection of morphological changes challenging. We show a
simple CNN can detect subtle differences in simulated images of the ribosomal DNA
locus, demonstrating our CNN-based classification technique can be used on a variety
of biological structures.
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INTRODUCTION

Forward modeling relies on the construction of an accurate simulation of a biological structure.
These models are built using prior knowledge and can be compared to experimental data to
either validate the model or simulate alterations to the structure. Budding yeast has proven
to be a useful model of macromolecular models given the ease of fluorescent labeling of
proteins and live cell imaging. Previous studies have generated models of microtubule dynamics,
centromeric DNA, and the entire genome using budding yeast (Gardner et al., 2008; Wong et al.,
2012; Stephens et al., 2013a,b; Lawrimore et al., 2016; Hult et al., 2017; Walker et al., 2019).
However, proper assessment of a model’s accuracy is complex and laborious. Here, we describe
a method that incorporates computational modeling, simulated image generation, deep learning,
principal component analysis, and machine learning to aid in the generation and assessment of
computational models. Previous fluorescent microscopy studies utilized deep learning, reviewed
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here (LeCun et al., 2015; Kraus et al., 2016; Pärnamaa and
Parts, 2017; Sullivan et al., 2018; Lu et al., 2019). The
method described herein trains a CNN on simulated fluorescent
images from computational models programed to simulate the
parameters deemed important by principal-component-analysis
(PCA)-based exploratory data analysis (Figure 1) or the user.
Experimental images are then classified by the CNN as a
computational model. Therefore, our method utilizes CNN
classification to determine which computational model best
matches a given experimental image. We chose to utilize models
of the budding yeast kinetochore and ribosomal rDNA locus
(rDNA), but any biological structure that can be digitally
imaged and spatially modeled by computer simulation can
utilize this method.

The kinetochore, composed of more than 100 proteins
(Biggins, 2013), is a cylindrical-shaped distribution of proteins
assembled at centromeres of chromatids in eukaryotic cells and
links the centromere to microtubule plus-ends (Joglekar et al.,
2009; Musacchio and Desai, 2017). The kinetochore complex also
plays an important role in the spindle assembly checkpoint by
confirming that all the chromosomes are attached to the spindle
in a bipolar orientation prior to the separation of the sister
chromatids (Lara-Gonzalez et al., 2012; Joglekar, 2016; Joglekar
and Kukreja, 2017). The kinetochore complex can be separated
into two regions: the inner and outer kinetochore (Cheeseman
et al., 2006; Fukagawa and Earnshaw, 2014; Huis in ’t Veld et al.,
2016; Musacchio and Desai, 2017). The inner kinetochore is
composed of proteins that are localized close to the chromatin,
interacting with the DNA. The proteins that are part of the inner
kinetochore in S. cerevisiae include Cse4, Ame1, and Okp1 (Stoler
et al., 1995; Pot et al., 2005; Hornung et al., 2014; Schmitzberger
et al., 2017; Anedchenko et al., 2019). The outer kinetochore is
composed of proteins that are localized close to microtubules
and contain the microtubule-binding domain of the kinetochore
complex. The proteins that are part of the outer kinetochore in
S. cerevisiae include Nuf2, Ndc80, and Spc24 (He et al., 2001;
Alushin and Nogales, 2011; Lampert and Westermann, 2011).

The budding yeast S. cerevisiae is a useful model organism
for the kinetochore complex. Several of the proteins in the
kinetochore complex of S. cerevisiae have direct homologs to
other eukaryotic organisms, most importantly humans, allowing
for understandings in S. cerevisiae to be translated to humans
with relative ease (Kitagawa and Hieter, 2001). Furthermore,
a large body of work on the genetics and nuclear dynamics
of S. cerevisiae already exists, providing a useful foundation
that can be further expounded upon. Lastly, while the general
structure of the kinetochore complex of S. cerevisiae is similar
to that of other eukaryotic organisms, simplifications in the
structure allow for easier modeling and analysis, such as the
one-to-one binding nature of a kinetochore to a microtubule
that is not present in higher eukaryotic organisms (Peterson
and Ris, 1976). Much work on understanding the kinetochore
in the S. cerevisiae model has been previously performed,
which include analyzing the 3D structure through electron
microscopy, characterizing key kinetochore protein interactions,
and identifying systematic differences between inner and outer
kinetochore proteins (Peterson and Ris, 1976; Stoler et al., 1995;

Pot et al., 2005; Lampert and Westermann, 2011; Haase et al.,
2012; Huis in ’t Veld et al., 2016; Joglekar and Kukreja, 2017;
Musacchio and Desai, 2017).

Unlike the kinetochore, the nucleolus, the nuclear body
that surrounds the ribosomal DNA locus in the budding
yeast genome, appears as an amorphous crescent adjacent to
the nuclear envelope in budding yeast during G1 of the cell
cycle (Yang et al., 1989; Léger-Silvestre et al., 1999). Previous
studies have modeled the nucleolus as a region of the genome
enriched in DNA crosslinking that compacts the rDNA locus
into several distinct clusters. Altering the kinetics of the
crosslinks in the model changes the properties of the clusters
and simulated fluorescent images of the model’s rDNA locus
(Hult et al., 2017; Walker et al., 2019). Given the difficulty in
detecting morphological changes in the rDNA locus/nucleolus
in fluorescence images, we sought to determine if a simple CNN
could correctly classify simulated fluorescence images generated
from models with different DNA crosslinking kinetics.

The process of acquisition, segmentation, and analysis of
microscopy images to gain insight into biological structures is
limited to an inefficient and slow binary comparison of features
susceptible to human bias, and does not provide any avenue for
future classification of phenotypes or structures without spending
large amounts of time and resources to train an individual to do
so by eye. To address these concerns and provide a method that
is more objective, resourceful, and time-efficient. We propose a
novel pipeline (Figure 1), which is based on publicly available
segmentation algorithms, deep learning and machine learning
techniques, and basic statistical procedures (Versari et al., 2017).

The experimental branch of the pipeline begins by
automatically detecting and segmenting budding yeast
undergoing mitosis. The resulting images are then processed to
remove noise and background fluorescence. An initial test on
whether the physical features of the two conditions differ is then
run by using a CNN. If the neural network fails to successfully
both train and categorize the two conditions correctly at an
accuracy of 70% or higher, then the two conditions are deemed
to appear too similar for this analysis pipeline. However, if the
neural network does successfully both train and categorize the
two conditions, then the features that are thought to be important
are extracted from the two sets of images. Principal component
analysis is then used to identify the features that are of greatest
importance to the distribution. These features are then validated
through successful segregation of the two distributions using
a support vector machine (SVM). If the SVM fails to correctly
categorize the two conditions at an accuracy greater than 70%
based on the features shown to be important, or if support vector
machines trained on important and unimportant features have
equal accuracy, then additional features are chosen and the
process of extraction, identification, and validation of important
features is repeated. However, if the validation is successful and
only the important features build a valid segregating hyperplane,
those features are then used as the basis for the development of
a 3D model that can output simulated microscope images. The
accuracy of the 3D model is then explored through successful
classification of the simulated images by a CNN that is trained on
experimental images or the classification of experimental images
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FIGURE 1 | Graphical representation of AI-assisted, forward modeling method. Blue boxes denote steps in the pipeline and yellow boxes denote termination or
iteration points. Green arrows depict a successful validation/classification and progression to the next step, while red arrows depict failed validation/classification and
repetition of previous steps. A convolutional neural network (CNN) is a deep learning classification algorithm that learns distinguishing features directly from the
images. A support vector machine (SVM) is a machine learning classification algorithm that learns from a given n-dimensional dataset of image features calculated
from the images. Principal component analysis (PCA) is a statistical procedure that calculates vectors that are linear combination of the original features. The new
vectors are calculated to generate the maximum amount of variance from the dataset. Each vector is ranked by the amount of variance in the transformed dataset.
The importance of the original features is determined by the amount of the original feature in a vector multiplied by the amount of variance of the new vector in the
transformed dataset. Italicized text on the right of the figure indicates the program associated with a given step.

by a CNN that is trained on simulated images. This procedure
of building a model and analyzing it is repeated to develop and
validate computational models of biological structures.

To test the pipeline’s effectiveness in discerning differences
in physical characteristics, we used a test case comparing the
inner kinetochore, represented by Cse4, and outer kinetochore,
represented by Nuf2. A simple CNN was able to distinguish
experimental images of fluorescently tagged Cse4 and Nuf2.
Two known metrics differentiating Nuf2 from Cse4 in mitotic
yeast is the width of their distributions perpendicular to the
spindle (Haase et al., 2012) and their distance from the spindle
pole body (SPB), the microtubule organizing centers in yeast
(Haase et al., 2013). These metrics would allow us to determine
if PCA would determine these metrics as important. Indeed,
these two metrics were found to be important in our PCA-based,
exploratory data analysis. Lastly, we trained a CNN on simulated
images of fluorescently tagged Cse4 that varied in a single model
parameter, the width of Cse4 distribution. We then used the
trained CNN to predict the width of the Cse4 distribution from
experimental images.

To test if our method could be applied to amorphous
biological structures, we tested if a CNN could distinguish

simulated images from polymer models of the budding yeast
nucleolus. A previous study had shown that the simulated
fluorescent signal of the nucleolus increased in area, decreased
in standard deviation, and exhibited fewer local maxima as the
crosslinking rate increased (Walker et al., 2019), indicating the
simulated, nucleolar images should be visually distinct. Indeed,
our CNN was able to distinguish between simulated images
created using different model parameters, demonstrating the
extensibility of our method.

MATERIALS AND METHODS

Experimental Image Acquisition,
Segmentation, and Normalization
Budding yeast strain YEF 473A was transformed with SPC29-
RFP:HYGR to fluorescently label the SPBs to generate the
strain KBY7999. Strain KBY7999 was transformed with GFP-
NUF2:NATR to generate strain KBY8169. Budding yeast strain
YEF 473A was transformed with pKK1 to fluorescently label Cse4
with GFP and the endogenous Cse4 was removed and replaced
with HYGR to generate strain KBY2010. Strain KBY2010
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was transformed with SPC29-RFP:KANR to fluorescently label
the SPBs and generate strain DCY1196.1. Seven Z-plane
image stacks of Spc29-RFP, N-terminal GFP-Nuf2 (KBY8169)
and Spc29-RFP, Cse4-GFP (DCY1196.1) yeast strains were
acquired with a Nikon Eclipse Ti TE2000-U inverted fluorescent
microscope using a Nikon Apo 1.4 NA 100x objective,
MetaMorph 7.8 software, Hamamatsu Orca Flash 4.0 LT
camera, and LumenCor Aura Light Engine. The cells in the
images were segmented using a MATLAB code repository,
CellStarSelect1, that utilizes the CellStar segmentation algorithm
(Versari et al., 2017) for segmenting budding yeast buds
from brightfield microscopy images. The MATLAB function
spotDetection calls the CellStar program to segment yeast buds
and uses the function advPointSourceDetection.m2 (Cicconet
et al., 2017), which was based code developed for Aguet
et al. (2013), to detect kinetochore and SPB foci within
the bud segment in the fluorescent image channels. If
two kinetochore foci and two SPB foci are detected, the
bud segment is analyzed and saved in a cell array. The
function compileImages.m parses the cell array containing
the segmented fluorescent images and creates a 50 × 50-
pixel image around each bud that contained two kinetochore
and SPB foci. The seven-step 50 × 50-pixel stack of each
bud was condensed into a single plane using a maximum
projection approach and had their intensity values normalized
and saved as 16-bit, RGB images. Duplicates of the images
were generated by rotating the images to generate seven
additional orientations of the initial to increase the size of the
dataset. The images then underwent a background subtraction
procedure and were de-noised using a low-pass 2D Wiener
filter. All image processing codes are contained within the
CellStarSelect repository1.

Training and Testing of a Convolutional
Neural Network
We generated a CNN using MATLAB’s Deep Learning Toolbox
(Mathworks, Natick, MA, United States). The following
summarizes the code from the MATLAB script CNNBasic.m3.
Image sets of the categories of interest were randomized and
split into training, validation, and testing data stores, with 56%
of the images used for training, 24% used for validation, and
20% used for testing. The architecture of the CNN contained
13 layers with learn-able weights. The first 12 layers consisted
of a 4-layer pattern repeated three times, with the first layer
consisting of a 3 × 3 convolutional layer with a stride of 1 and
8, 16, and 32 filters, respectively. The second layer was a batch
normalization layer, the third layer was a rectified linear unit
layer, and the fourth layer was a 2 × 2 max-pooling layer with
a stride of 2. However, on the final repetition of the four layers,
the fourth layer was a fully connected layer, with an output size
set to the number of classification categories, that fed into a
SoftMax layer. The training used stochastic gradient descent
with momentum as well as the associated default values for this

1https://github.com/jlaw8504/CellStarSelect
2https://github.com/HMS-IDAC/MatBots
3https://github.com/BloomLabYeast/CNNs

method in MATLAB, with the exception of the initial learning
rate set to 0.01, the max epochs set to 20, and a validation
frequency set to 30 iterations.

Feature Extraction and
Principal-Component-Analysis-Based
Feature Evaluation
Kinetochore features were extracted from the rescaled, 16-
bit, RGB, experimental and simulated images using the
FeatureExtraction.mlapp MATLAB application4. The following
features were extracted from the images: spot height (width of
foci perpendicular to the spindle) of SPB (SPC29-RFP) foci and
kinetochore (Cse4-GFP or GFP-Nuf2), the standard deviation of
linescans of SPB and kinetochore foci parallel (X), perpendicular
(Y) to the spindle, and of a 5 × 5 cropped segment of the foci,
the mean intensity of a 5 × 5 cropped segment of the SPB and
kinetochore foci, the distance of the two kinetochore foci, the
distance of the kinetochore foci to the proximal SPB foci, and
the distance of the kinetochore foci to the proximal SPB foci
parallel to the spindle (the X-axis component of the kinetochore
to SPB distance).

Features of interest (Table 1) from all classification
categories were combined, normalized using MATLAB’s
built-in normalize.m function, and subjected to principal
component analysis. Principal component analysis was
performed with MATLAB’s built-in pca.m function. The
pca.m function outputted the principal components, stored
in the coeff matrix variable, and the associated percentage
of the total variance explained by each principle component,
stored in the explained array variable. The importance of
the features was determined by multiplying the square of
each of the principal components by the percentage of the
variance that principal component explained, and the resultant
values were ranked in descending order. These analyses were
performed by PCAFeatureExtraction.m for comparing data
from experimental images, PCASimFeatureExtraction.m for
comparing data from simulated images of inner kinetochore
models, and PCASimInnerOuterFeatureExtraction.m for
comparing data from simulated images of inner and outer
kinetochore proteins. These functions are available at
https://github.com/BloomLabYeast/FeatureExtractionAndSVM.

Training and Testing Binary Gaussian
Kernel
Observations and associated data from the feature extraction
were randomized and split into training and testing datasets,
with 70% of the images used for training and the remaining 30%
used for testing. The training set was then used to train a binary
Gaussian kernel-based classification model using a MATLAB
program, runSVM.m (see text footnote 5). The classifier used
a support-vector-machine-based response range and a deviance
loss function with a variable regularization term strength, kernel
scale parameter, and the number of dimensions of expanded

4https://github.com/BloomLabYeast/FeatureExtractionAndSVM
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TABLE 1 | Features of interest ranked in order of their importance by PCA.

Feature Rank Description

Kinetochore distance to SPB 1 Euclidean distance between the brightest pixel of the kinetochore and the brightest pixel of its closest SPB foci
normalized by the length of the spindle

Kinetochore X-distance 2 Magnitude of the distance between the brightest pixel of the kinetochore and the brightest pixel of its closest SPB foci
parallel to the spindle axis, normalized by the length of the spindle

SPB foci mean intensity 3 Mean intensity of a 5 × 5 region encompassing the SPB foci

SPB foci height 4 Full-width-half-max of the maximum projection of the 7 × 15 region about the brightest pixel of the SPB foci
perpendicular to the spindle

SPB foci STD in Y 5 Standard deviation of the intensities generated from a line-scan of a SPB foci perpendicular to the spindle

SBP foci STD in X 6 Standard deviation of the intensities generated from a line-scan of a SPB foci parallel to the spindle

SPB Foci STD 7 Standard deviation of intensities of 5 × 5 region encompassing the SPB foci

Kinetochore foci height 8 Full-width-half-max of the maximum projection of the 7 × 15 region about the brightest pixel of the kinetochore foci
perpendicular to the spindle

Kinetochore foci STD 9 Standard deviation of intensities of 5 × 5 region encompassing the kinetochore foci

Kinetochore foci STD in Y 10 Standard deviation of the intensities generated from a line-scan of a SPB foci parallel to the spindle

K–K distance 11 Euclidean distance between the brightest pixels of the two kinetochore foci, normalized by the length of the spindle axis

Kinetochore foci mean intensity 12 Mean intensity of a 5 × 5 region encompassing the kinetochore foci

Kinetochore foci STD in X 13 Standard deviation of the intensities generated from a line-scan of a kinetochore foci parallel to the spindle

space. The testing set was then classified by the classifier and the
accuracy calculated.

3D Modeling and Simulated Imaging of
the Budding Yeast Kinetochore
The StaticKinet MATLAB application (Figure 2) allows users
to generated custom three-dimensional models of the budding
yeast mitotic spindle and kinetochore complex. The program
can model half of a mitotic spindle or an entire mitotic
spindle by setting the “Number of Complexes” parameter to
1 or 2, respectively. The number and diameter of kinetochore
microtubules can be set. The “Easy Align” setting forces the
model to align to the X, Y, and Z axes of the visualization
(bottom three panels) for easier interpretation of the model.
The “Complex Diameter” parameter controls the diameter of
the circular arrangement of kinetochore microtubules at their
plus ends. The kinetochore microtubule plus ends can be
randomly staggered by a given range, or can be staggered using
a microtubule dynamics simulation using Simulink (Mathworks,
Natick, MA, United States) (Stephens et al., 2013a). The
“Rotation” parameter allows users to rotate the orientation of
the plus ends of the kinetochore microtubules either randomly
or by a fixed amount in the X, Y, and Z dimensions. The
StaticKinet application was designed to simulate kinetochore
protein distributions relative to the N-terminus of Nuf2. The
N-terminus of Nuf2 is bound near the minus end of the
kinetochore microtubule (Cheeseman et al., 2006; Wei et al.,
2007; Ciferri et al., 2008). The “Length” parameter of Nuf2
sets the range the Nuf2 fluorophores will be distributed from
the plus end of the microtubule. Thus, a “Length” parameter
of 50 would distribute the Nuf2 fluorophores randomly in a
50 nm range from the plus end of the microtubule. The “Color
Channel” parameter of Nuf2 controls the simulated color of
the Nuf2 fluorophores. The StaticKinet application allows the
user to control several parameters of the Spc29 distribution
and the kinetochore microtubules. The Spc29 distribution allows

users to approximate the structure of the spindle pole bodies
(SPBs). The Spc29 parameters were designed so the user can
either simulate the minus ends of the microtubules or adjust the
model to create a disc-like structure by altering the structure and
tubule diameters and tubule number parameters. The “Length”
parameter controls the how widely the Spc29 fluorophores can
distribute along the microtubule minus ends. The “Distance
to (+)” parameter of Spc29 controls the average length of
the kinetochore microtubules in the model, while the “Tubule
Diameter” parameter of Spc29 controls the diameter of the minus
ends of the kinetochore. The “Structure Diameter” parameter
of Spc29 controls the diameter of the circular arrangement of
the microtubule minus ends. The “Number of Fluorophore”
parameter of Spc29 controls the number fluorophores per
microtubule minus end. The “Number of Tubules” parameter
of Spc29 controls the number of microtubule minus ends.
The “Number of Tubules” parameter of Spc29 is independent
of the “Number of Microtubules” parameter at the top of
the interface that controls the number of microtubule plus
ends. The “Color Channel” parameter of Spc29 controls the
simulated color of the Spc29 fluorophores. The “Number of
Arms” parameter under the kinetochore protein section controls
the number of kinetochore fluorophores per microtubule plus
end. The StaticKinet application models the kinetochores on
a microtubule as straight rods coming from the plus ends
of the microtubule to a single, defined point in space. The
“Number of Bound Arms” controls the number of fluorophores
simulated to be bound to a single point in space to mimic the
individual kinetochore complexes converging on a single Cse4
centromere. Using the “Number of Bound Arms” parameter you
can simulate a specified number of kinetochore complexes on
each microtubule to randomly orient from the kinetochore plus
end within a specified angle range. The length of the kinetochore
fluorophore from the plus end is defined by the “Length of Arm”
parameter. Users can slide the fluorophore along the simulated
kinetochore “rod,” toward the microtubule plus end, by adjusting
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FIGURE 2 | Kinetochore Model Graphical User Interface. The interface of the StaticKinet MATLAB application used to generate simulated fluorescent images of
kinetochore models. In the bottom three panels the red dots represent fluorophores bound to the minus ends of the kinetochore microtubules (to approximate the
spindle pole bodies), the blue dots represent the N-termini of Nuf2 bound to the plus ends of the kinetochore microtubule, and the green dots represent a given
kinetochore protein, i.e., Cse4.

the “Point Marked” parameter. The “Angle from MT Axis”
parameter controls the radial displacement of the single point
in space where all the individual kinetochores converge, i.e.,
the Cse4 nucleosome. The parameter was meant to model the
kinetochore complexes being pulled radially from the spindle.
The “Help” tab allows users to access the online user guide. The
“About” tab provides links to Bloom Lab code repository which
contains the “KineticButShakeless” code repository5 that contains
the StaticKinet application, the Bloom Laboratory website6, and
the code webpage of the Bloom Lab website7. The “File” tab allows
users to quit the application. The StaticKinetInMass application
was used to generated multiple iterations of models designed in
StaticsKinet. The StaticKinetInMass program outputted a series
of XML files that contained the fluorophore locations that were

5https://github.com/BloomLabYeast/KineticButShakeless
6http://bloomlab.web.unc.edu/
7http://bloomlab.web.unc.edu/resources/programs/

converted into simulated microscope images by Microscope
Simulator 2 (Quammen et al., 2008) available at http://cismm.
web.unc.edu/software under the “Inactive Software” section.

3D Modeling and Simulated Imaging of
the Budding Yeast Genome
The budding yeast genome was simulated as a polymer bead-
chain model (Hult et al., 2017; Walker et al., 2019). Each
chromosome was modeled as a polymer chain, with centromeres
attached to a single point on the nuclear membrane. The
genome was discretized such that each bead in the model
composed approximately 5 kb of DNA. The model contained
2803 beads, of which 361 comprised the rDNA locus within
the nucleolus. The beads representing the ribosomal DNA locus
could spontaneously crosslink with each other to mimic the
crosslinking effects of the structural maintenance of chromosome
proteins, i.e. cohesin and condensin. The average duration
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of the crosslinks (µ) was set to either 0.09, 0.19, or 1.6 s
in each simulation. The model was generated and simulated
using DataTank, an object oriented programing environment8.
DataTank’s microscope simulator module was used to generate
simulated fluorescent images of the beads corresponding
to the rDNA locus.

RESULTS

A CNN Can Distinguish Fluorescent
Images of GFP-Nuf2/SPC29-RFP and
Cse4-GFP/SPC29-RFP
To initially determine whether the images of inner and outer
kinetochore complexes are distinguishable, images of Spc29-
RFP, GFP-Nuf2 (outer kinetochore) and Spc29-RFP, Cse4-
GFP (inner kinetochore) were acquired through the automated
image acquisition pipeline (see section “Experimental Image
Acquisition, Segmentation, and Normalization”). The automated
process of acquiring, segmenting, and preprocessing images
of Spc29-RFP, GFP-Nuf2 and Spc29-RFP, Cse4-GFP generated
5,920 and 4,416 images, respectively (Figure 3). The elder SPB
is brighter than the younger SPB when fluorescently tagged with
RFP (Pereira et al., 2001). This mismatch in SPB foci brightness
causes the younger SPB foci to occasionally be erased in during
the image processing (Figures 3A,B). Of the 5,920 images of
Nuf2, 4,416 were randomly selected to allow for a balanced
dataset. The trained CNN was able to distinguish and categorize
inner kinetochore images from outer kinetochore images at a
87.4% testing accuracy (Table 2), confirming that the Nuf2 and
Cse4 processed images can be distinguished by a CNN.

Ranking Kinetochore Feature
Importance With Principal Component
Analysis
Previous studies have shown that the foci of Cse4-GFP in
metaphase yeast are, on average, further from their proximal SPB
foci parallel to the spindle (Haase et al., 2013) and are “taller”
(wider perpendicular to the spindle) than outer kinetochore
proteins (Haase et al., 2012). Therefore, we chose to measure
both the Euclidian (the one-dimensional distance that combines
the distances parallel and perpendicular to the SPB foci) distance
and distance parallel to the spindle of kinetochore foci to their
proximal SPB and the spot height (width perpendicular to the
spindle). We reasoned that the distance between the Cse4-
GFP foci would be greater than GFP-Nuf2 foci given Cse4-GFP
foci appear further from their proximal SPB foci; however, this
metric will also change as the cell cycle progresses so we wanted
to query if the feature could still distinguish Cse4-GFP and
GFP-Nuf2 images. Given that foci shape has been shown to
be a distinguishing criterion for fluorescently tagged inner and
outer kinetochore proteins, we wanted to examine the standard
deviation of signal intensity of the foci both overall and parallel
and perpendicular to the spindle. Previous measurements of

8http://www.visualdatatools.com/DataTank

FIGURE 3 | Representative raw and processed images of GFP-Nuf2 and
Cse4-GFP. (A) Raw maximum intensity projections of N-terminal GFP-tagged
Nuf2 and SPC29-RFP in mitotic budding yeast cell (upper row) and raw
intensity projection of CSE4-GFP and SPC29 in mitotic budding yeast cell
(lower row). Arrows indicate positions of elder and younger spindle pole body
foci. (B) Processed versions of maximum intensity projections in (A). Note loss
of younger spindle pole body foci.

foci intensity have shown that C-terminally tagged Nuf2-GFP
is approximately 4-fold greater than Cse4-GFP (Joglekar et al.,
2008a); therefore, we measured the mean intensity of the foci.
The mother buds of mitotic yeast were automatically cropped,
processed, and analyzed to extract features about the kinetochore
foci’s shape, intensity and position relative to the SPB foci
(see section “Experimental Image Acquisition, Segmentation,
and Normalization”and “Feature Extraction and Principal-
Component-Analysis-Based Feature Evaluation”). Images that
lacked either kinetochore or SPB foci due to processing were
disregarded by the feature extraction program. The resulting
feature tables of Cse4-GFP and GFP-Nuf2 were joined and
principal component analysis was performed to rank each
feature’s importance (Table 1).

The two most important features were kinetochore foci
distance to the proximal SPB foci (kinetochore distance to SPB
in Table 1) and kinetochore foci distance to the proximal SPB
foci parallel to the spindle (kinetochore X-distance in Table 1),
recapitulating the result from Haase et al. (2013) that inner
kinetochore proteins are further from the proximal SPB than
outer kinetochore proteins (Figures 4A,B). The next set of
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TABLE 2 | Confusion matrix of the CNN classification of processed, experimental
images.

True classification Cse4-GFP (n = 883) 754 129

Nuf2-GFP (n = 883) 94 789

Total N = 1766 Cse4-GFP Nuf2-GFP

Predicted classification

features all depended on the shape and intensity of the SPB
foci. Statistical analysis of the processed images revealed that
the GFP-Nuf2 strain’s SPB foci have higher mean intensities and
have larger spot heights than SPB foci from the Cse4-GFP strain
(Figures 4C–F). It is important to note that the images were
rotated, rescaled, background subtracted, and de-noised using
a custom MATLAB program (see section “Experimental Image
Acquisition, Segmentation, and Normalization”). Therefore, the
image processing enhanced differences in the appearance of SPB

foci of the GFP-Nuf2 and Cse4-GFP strains. In contrast, the
intensity of the kinetochore foci was one of the least important
features (Table 1). This analysis was to aid in understanding
what features the CNN may generate to distinguish processed
images of GFP-Nuf2 and Cse4-GFP, as it is not possible to provide
accurate quantitative measurements of fluorescent intensity from
rescaled images.

The importance of these features was tested by training three
classification algorithms using a support vector machine (SVM)
with a Gaussian kernel. One set would use all the features, another
would use the two most important features, kinetochore distance
to SPB and kinetochore X-distance (Table 1), and another would
use the two least important features, kinetochore foci mean
intensity and kinetochore foci standard deviation in X (parallel
to spindle) (Table 1). For each set of features, the data was
randomly split 70% for training and 30% for testing, and an SVM
with a Gaussian kernel trained was trained and then predicted

FIGURE 4 | Feature comparisons between GFP-Nuf2 and Cse4-GFP processed images. Boxplots comparing kinetochore foci distance to proximal spindle pole
body (SPB) foci (A), kinetochore foci distance to proximal SPB foci in X-direction only (parallel to the spindle) (B), SPB foci intensity (C), SPB foci height (width of foci
perpendicular to spindle) (D), standard deviation of the intensities generated from a line-scan of a SPB foci perpendicular to the spindle (E), standard deviation of the
intensities generated from a line-scan of a SPB foci parallel to the spindle (F). The three asterisks indicate a p-value < 0.001 using a Wilcoxon rank sum test.
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the classifications of the test set. To deduce the ability of each
feature set to distinguish images of Cse4 and Nuf2, the data was
randomly split into test and training sets 30 times and an SVM
was trained and tested on the resulting sets each time to generate
a distribution of testing accuracies. The accuracies of the SVM’s
that were trained on the two most important features were not
statistically different than the accuracies of the SVM’s trained
with all the features (Figure 5). In contrast, the accuracies of
the SVM’s that were trained on the two least important features
were statistically lower than the accuracies of the SVM’s trained
with all the features (Figure 5). Thus, PCA-based, exploratory
data analysis showed that distance of the kinetochore foci to
the proximal SPB foci, which had been observed to be different
in a previous study (Haase et al., 2013), was an important,
distinguishing feature of Cse4 and Nuf2 fluorescent images. This
result shows that the PCA-based method can help users identify
distinguishing features of differing biological structures.

CNN-Based Approach to Forward
Modeling of the Kinetochore
Our PCA-based, exploratory data analysis relies on feature
engineering, which requires a user to generate features
themselves. On the other hand, a CNN requires no feature
engineering but provides little information as to why the CNN
classified images into a given category. We reasoned a three-
dimensional computational model that could be converted into
a simulated, fluorescent image could be used to train a CNN
to provide users insights into what model parameters best fit
experimental images. First, a suit of differing model parameters

FIGURE 5 | Boxplot comparing classification accuracies of differing sets of
kinetochore image features. Thirty support vector machines (SVMs) were
trained on randomly selected data composing 70% of the entire feature
dataset, making each SVM independent. The accuracy of each SVM was
calculated by having each trained SVM predict the classifications of the
remaining 30% of the original dataset. The two most important features are
kinetochore distance to SPB and kinetochore X-distance, and the two least
important features are kinetochore foci mean intensity and kinetochore foci
standard deviation in X-direction (see Table 1). Three asterisks indicate
P < 0.001 using a Wilcoxon rank sum test. NS indicate P > 0.05 using a
Wilcoxon rank sum test.

is established and for each parameter set, multiple simulated
images are created and labeled to that parameter set. Those image
sets are used to train a CNN. The trained CNN then classifies
experimental images to a given parameter set. Users could then
examine which model parameters consistently label experimental
images. To test this approach, we wanted to explore how a CNN,
trained on simulated images generated by a three-dimensional,
kinetochore model, would classify experimental images of Cse4-
GFP. Simulated images were developed based on our current
understanding of the mitotic spindle and kinetochore. We based
the dimensions of the mitotic spindle on electron tomographs
of the budding yeast mitotic spindle (O’Toole et al., 1999). We
built our model such that the N-terminus of Nuf2 (blue) binds to
the plus-end of a kinetochore microtubule, based on the reports
of the N-terminus of Nuf2 binding to kinetochore microtubules
(Cheeseman et al., 2006; Wei et al., 2007; Ciferri et al., 2008). In
the model, Cse4 (green) is placed in line with the central axis of
the microtubule by default (Figure 6A), but the exact location of
Cse4 relative to the attached kinetochore microtubule is unclear.

FIGURE 6 | Default kinetochore model organization. (A) Cartoon of the
kinetochore model. The model is oriented end-on from the spindle, so the
sister kinetochore complexes and SPBs (red dots) overlay each other. Cse4s
(green dots) are located on the central axis of the microtubule. The N-termini
of Nuf2 are blue dots (Joglekar et al., 2009) that bind the plus-end of the
simulated kinetochore microtubules (kMTs), which are not shown. SPBs (red
dots) are represented in our model as fluorophores surrounding the minus
ends of the kMTs. (B) Side-view of the volumetric model, generated by the
Microscope Simulator 2 program, of the organization that will be used for
simulated, fluorescent image generation. (C) The simulated microscope image
of the organization shown in panel (B).
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FIGURE 7 | Kinetochore model organization with Cse4 radially displaced from kinetochore microtubule axis. (A–C) Scatter plots depicting the end-on view of the 25,
50, and 100 nm radial displacement models. Cse4s are the green dots, N-termini of Nuf2 are the blue dots forming a ring around the kMT plus-ends, and the SPBs
are composed of red dots surrounding the minus-ends of the kMTs. (D–F) Volumetric models, generated by the Microscope Simulator 2 program, of the 25, 50, and
100 nm radial displacement organizations that were used for simulated, fluorescent image generation. (G–I) The respective simulated microscope images to the
volumetric models shown in panels (E,F). White bars indicate Cse4 foci height.

In our model, the diameter of the spindle at the kinetochore
plus ends was set to 250 nm, with each microtubule having a
diameter of 25 nm (Sodeik, 2000), and the microtubule ends were
staggered in a uniform distribution ± 100 nm from the central
line, representing the range of microtubules lengths observed
in bipolar spindles (O’Toole et al., 1999). We represented the
SPB (red) by placing 20 fluorophores at the minus ends of the
16 kinetochore microtubules (Figure 6A), which is a rough
approximation of the complex shape of the yeast SPB (Bullitt
et al., 1997; Muller et al., 2005; Viswanath et al., 2017). Our
computational model is converted to a fluorescent image using
Microscope Simulator 2 (Quammen et al., 2008), which converts
each Cse4 (green) and SPB (red) bead in Figure 6A into a

TABLE 4 | Categorization of experimentally acquired inner kinetochore images by
the CNN trained on simulated images of the inner kinetochore of varying radial
displacements.

Exp. Cse4 83 2954 1379 0

Total N = 4,416 Sim. 0 nm/On-axis Sim. 25 nm Sim 50 nm Sim 100 nm

Predicted classification

single fluorophore positioned in three dimensions (Figure 6B)
and then into a simulated, fluorescent image (Figure 6C) by
convolving each fluorophore with a point-spread function. The
spreading of the light via diffraction blurs the distributions of the
fluorophores into individual foci (Figure 6C).

TABLE 3 | Confusion matrix of the CNN classification of simulated Cse4 images of varying radial displacements.

True classification Sim. 0 nm/On-axis (n = 14,987) 14,984 3 0 0

Sim. 25 nm (n = 14,832) 0 14,825 7 0

Sim. 50 nm (n = 14,706) 0 2 14,703 1

Sim. 100 nm (n = 14,130) 0 0 0 14,130

Total N = 58,655 Sim. 0 nm/On-axis Sim. 25 nm Sim. 50 nm Sim. 100 nm

Predicted classification
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A controversial parameter in our model is the position
and number of Cse4 molecules. The initial assumption in the
field was that there was one Cse4-containing nucleosome (2
Cse4 proteins per nucleosome) per centromere in budding
yeast (Meluh et al., 1998; Collins et al., 2004; Joglekar
et al., 2008b). Using independent fluorescent standards,
subsequent studies found the signal of metaphase Cse4
foci was brighter than expected (Coffman et al., 2011;
Lawrimore et al., 2011) and that Cse4 foci were “taller”
(wider perpendicular to the spindle) than outer kinetochore
foci (Haase et al., 2012). These findings suggest that Cse4
proteins are spread perpendicular to the spindle in budding
yeast during metaphase. Therefore, we altered the placement
of Cse4 to gradually increase its radial distance from the
corresponding kinetochore microtubule center in our
computational model (Figures 7A–C). The radial models
were converted into Microscope Simulator 2 simulations
(Figures 7D–F) and then into simulated, fluorescent images
(Figures 7G–I). The increase in radial displacement of Cse4
did result in noticeably “taller” Cse4 foci in the simulated
images (Figures 7D–F). We trained a CNN on simulated
images generated from models were Cse4 was displaced by
0 nm (Figure 6), 25 nm, 50 nm, or 100 nm (Figure 7).
The validation accuracy of the CNN on simulated images
was 99.98%, demonstrating the CNN could distinguish
the change in Cse4 radial position with high accuracy
(Table 3). We used the trained CNN to predict the radial
displacement of 4,416 processed experimental images of
Cse4-GFP and SPC29-RFP (Table 4). Most processed images
were classified with a radial displacement of 25 or 50 nm,
with only 1.9% (83 of 4,416) of images being classified
as 0 nm. This result demonstrates that our CNN-based
approach to forward modeling captured the biological
observation that Cse4-GFP foci are spread perpendicular to
the spindle axis. Thus, this CNN-based approach to forward
modeling is suitable for fine tuning computational models of
biological structures.

CNN Classification of Simulated
Nucleolar Images
The nucleolus is the region within the nucleus that surrounds
the rDNA locus. Fluorescently labeled nucleolar proteins appear
amorphous, making identification of morphological phenotypes
difficult. Recently, two studies utilized three-dimensional,
computational simulations of the budding yeast genome to
study how different DNA crosslinking kinetics within the rDNA
locus affect nucleolar sequestration and rDNA structure (Hult
et al., 2017; Walker et al., 2019). We reasoned our CNN-
based, forward modeling approach would be appropriate for
this computational model if a CNN could detect the subtle
differences in the simulated images generated from models
with different crosslinking kinetics (Figure 8). We found
that the CNN was able to identify the average crosslinking
duration with 99.76% accuracy (Table 5). Thus, this rDNA
model and CNN architecture would be suitable for CNN-based
forward modeling.

FIGURE 8 | Nucleolar model organization and simulated fluorescent images.
(A–C) Volumetric model of the budding yeast nucleolus with differing
bead-bead dynamic crosslinking durations. Red beads represent rDNA locus.
The green banded sphere represents the nuclear membrane which acts as a
boundary constraint in the simulation. (D–F) Simulated fluorescent images of
the nucleolar models. The parameter µ indicates the average duration of a
bead-bead crosslink.

TABLE 5 | Confusion matrix of the CNN trained on simulated nucleolar images
with varying crosslinking durations within the rDNA locus.

True classification µ = 1.6 s (n = 2,088) 2,086 2 0

µ = 0.19 s (n = 2,088) 7 2,081 0

µ = 0.09 s (n = 2,088) 0 6 2,082

Total N = 6,264 µ = 1.6 s µ = 0.19 s µ = 0.09 s

Predicted classification

DISCUSSION

The Kinetochore as a Test-Case for
AI-Assisted, Forward Modeling
Here we demonstrate a method that combines deep learning
and computational modeling to compare models of biological
structures directly with experimental images (Figure 1).
A relatively simple CNN, built with MATLAB’s Deep Learning
ToolBox (Mathworks, Natick, MA, United States), was able
to determine the difference between GFP-Nuf2/Spc29-RFP
image and Cse4-GFP/Spc29-RFP images with 87.4% accuracy
(Table 2). To validate the difference between the images of
GFP-Nuf2/Spc29-RFP and Cse4-GFP/Spc29-RFP, we extracted
features that were known to be different between the two strains.
The importance of these features was determined using PCA
and validated by comparing the classification accuracies of
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SVM’s trained on features deemed important versus SVM’s
trained on features deemed unimportant. Indeed, the SVM’s
trained on unimportant feature performed worse than those
trained on important features (Figure 5). The most important
feature was the distance of the kinetochore foci to the proximal
SPB foci (Table 1), that had previously been shown to be
different between Cse4 and Nuf2 (Haase et al., 2013). Thus,
this PCA-based exploratory data analysis can detect biologically
relevant difference between fluorescent images. However, the
PCA-based analysis can only indicate a feature as discernable.
The PCA-based analysis cannot discern the appropriate value
of a given feature. In order to determine the measurements of
features we generated a three-dimensional, computational model
of the kinetochore. We then altered the radial displacement
of Cse4 in the model to determine which radial displacement
settings fit the experimental images. The CNN classified 98.1% of
experimental images of Cse4-GFP in the 25 nm and 50 nm radial
displacement categories (Table 4). This result recapitulated the
biological finding that Cse4-GFP is “taller” (wider perpendicular
to the spindle) than other fluorescently labeled outer kinetochore
proteins (Haase et al., 2012).

The kinetochore model illustrated that a CNN used in
conjunction with a three-dimensional model can be used to
fine-tune model parameters to match experimental images. We
used the kinetochore as test case for our AI-assisted forward
modeling pipeline, but any biological structure that can be
imaged and computationally modeled can be analyzed by this
method. Unlike the kinetochore, images of fluorescently labeled
nucleolar proteins often appear amorphous, making CNN-based
forward modeling particularly useful. We again found that a
relatively simple CNN, built with MATLAB’s Deep Learning
ToolBox (Mathworks, Natick, MA, United States), was able to
determine the difference between simulated nucleolar images
(Figure 8) generated from a budding yeast genome model (Hult
et al., 2017; Walker et al., 2019) with 99.76% accuracy (Table 5).
Thus, a CNN is capable of discerning differences in amorphous
structures as well.

Future Directions for AI-Assisted
Forward Modeling
Here, we only altered a single parameter, the radial displacement
of Cse4, in our computational model. However, it is possible
to alter multiple parameters of our model and train a CNN
on the different combinations allowing us to fine tune the
model on multiple parameters. An alternative approach is to
use a system similar to a generative adversarial network (GAN)

(Goodfellow et al., 2014). GANs have been used recently to
generate synthetic super-resolution images from lower resolution
microscopy images (Ouyang et al., 2018; Wang et al., 2019;
Zhang et al., 2019). In this approach the computational model
would be driven by a generative algorithm to generate simulated
images. A discriminative algorithm that had been trained on
experimental images would then classify the simulated image
into a given class or flag it as a detected fake. Since each
simulated image is derived from a model, the generative
algorithm could automatically tune model parameters to best fit
an experimental image dataset. The generated images could them
be interrogated by feature extraction to ensure key feature metrics
were maintained in the simulated image generation. This GAN-
based approach is a natural extension of the method we have
described here and could be used on any biological structure that
can be imaged and computationally modeled.
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